
Migration	from	2.2	to	2.3
Information

All	external	dependencies	have	been	upgraded	to	the	latest	version:

Kotlin:	1.4.21
Coroutines:	1.4.2
Koin:	2.2.1
Moshi:	1.11.0
ExoPlayer:	2.12.2
Constraint	Layout:	2.0.4

Implementations	based	on	AbsVideoPlayerWrapper	may	need	to	adjust	error	reporting.
See	Error	Handling	for	more	details.
Everything	which	worked	in	2.2.x	should	work	in	2.3.0	as	well	without	any	code	changes.

Detailed	Steps
To	make	use	of	new	features	like	closed	captions	or	error	handling	some	changes	may	be	required.
Some	imports	have	been	changed.	They	are	marked	as	deprecated	and	can	be	fixed	by	using
"quick-fix"	feature	of	IntelliJ.

ClosedCaptions

No	changes	are	required	for	SxAdView	or	InstreamExoWrapper	based	implementations.
Implementations	based	on	AbsVideoPlayerWrapper	need	to	add	the	closedCaptions
parameter	to	the	loadAd	method:

override	fun	loadAd(
				url:	String,	
				closedCaptions:	List<SxClosedCaption>
)	{
				super.loadAd(url,	closedCaptions)
				...
}

Building	an	ExoPlayer	MediaSource	with	the	provided	SxClosedCaption	is	shown	in	the
following	example:

file:///project/docs/markdown-pdf.html#error-handling


fun	buildMediaSource(
				mediaUrl:	String,
				closedCaptions:	List<SxClosedCaption>
):	MediaSource	{
				val	videoSource	=	ProgressiveMediaSource.Factory(dataSourceFactory)
												.setLoadErrorHandlingPolicy(DefaultLoadErrorHandlingPolicy(0))
												.createMediaSource(MediaItem.fromUri(Uri.parse(mediaUrl)))
				val	language	=	Locale.getDefault().language
				val	subtitleSources	=	closedCaptions.firstOrNull	{	it.language	==	language	
}?.let	{
								SingleSampleMediaSource.Factory(dataSourceFactory).createMediaSource(
																MediaItem.Subtitle(Uri.parse(it.fileURL.withProtocol),
																								MimeTypes.TEXT_VTT,	language,	Format.NO_VALUE),	
C.TIME_UNSET
								)
				}
				return	(subtitleSources?.let	{	MergingMediaSource(videoSource,	it)	}	?:	
videoSource)
}

Visibility	Threshold

The	minimum	relative	amount	of	the	SxAdView	that	needs	to	be	visible	to	the	user	until
playback	starts/resumes	can	now	be	defined	with	the
SxConfiguration.visibleThreshold	property.
Accepts	a	Double	within	a	range	of	0.0	(player	not	visbible	at	all)	to	1.0	(complete	player
visible).
The	default	is	set	to	0.5	(was	0.75	in	2.2.x).

Error	Handling

To	get	notified	for	all	errors	that	are	propagated	by	the	SDK,	set	a	listener	using	the
addOnErrorListener	method,	which	is	available	in	SxSequencer	and	SxAdView	instances.
No	changes	are	required	for	SxAdView	or	InstreamExoWrapper	based	implementations.
Implementaions	based	on	AbsVideoPlayerWrapper	need	to	report	any	error	produced	by
the	used	video	player	to	the	wrappers	error	property.	To	achieve	this,	transform	caught
video	player	exceptions	to	a	SxMediaError	instance.	ExoPlayer	exceptions	can	be
transformed	using	the	provided	Throwable.buildMediaError()	method.	When	dealing
with	another	video	player,	you	can	orientate	yourself	on	the
Throwable.buildMediaError()	method	to	implement	your	own:



fun	Throwable.buildMediaError():	SxMediaError	=	SxMediaError(when	(this)	{
																is	ExoPlaybackException	->	when	(type)	{
																				TYPE_TIMEOUT,
																				TYPE_SOURCE,
																				TYPE_REMOTE	->	MEDIA_ERR_NETWORK
																				TYPE_RENDERER,
																				TYPE_OUT_OF_MEMORY	->	MEDIA_ERR_DECODE
																				TYPE_UNEXPECTED	->	MEDIA_ERR_SRC_NOT_SUPPORTED
																				else	->	MEDIA_ERR_SRC_NOT_SUPPORTED
																}
																is	HttpDataSource.HttpDataSourceException,
																is	Loader.UnexpectedLoaderException,
																is	RawResourceDataSource.RawResourceDataSourceException	->	
MEDIA_ERR_NETWORK
																else	->	MEDIA_ERR_DECODE
												},	message	?:	"")

After	creating	a	SxMediaError	instance,	set	it	to	the	error	property	of	the
AbsVideoPlayerWrapper.	The	following	example	shows	the	error	reporting	of	the	ExoPlayer	used
by	the	SDK:



class	ExoWrapper	:	AbsVideoPlayerWrapper()	{

				...

				private	val	exoListener	=	object	:	EventListener	{
								override	fun	onPlayerError(
												exception:	ExoPlaybackException
								)	{
												error	=	exception.buildMediaError()
								}
								...
				}

				init	{
								player.addListener(exoListener)
				}

				fun	loadMedia(...)	{
								val	mediaSource	=	buildMediaSource(mediaUrl,	closedCaptions).apply	{
																				addEventListener(Handler(Looper.getMainLooper()),	object	:	
MediaSourceEventListener	{

																								override	fun	onLoadError(windowIndex:	Int,
																																																	mediaPeriodId:	
MediaSource.MediaPeriodId?,
																																																	loadEventInfo:	LoadEventInfo,
																																																	mediaLoadData:	MediaLoadData,
																																																	error:	IOException,
																																																	wasCanceled:	Boolean)	{
																												this@ReferenceVideoPlayerWrapper.error	=	
error.buildMediaError()
																								}
																				})
																}
								}

Timeouts

All	timeouts	used	by	the	SDK	can	now	be	defined	in	the	SxConfiguration	class	using	the
timeouts	property.	See	the	KDoc	of	SxTimeoutConfig	for	details.
Implementations	based	on	AbsVideoPlayerWrapper	need	to	configure	the	used	video
player	with	the	mediaConnect	and	mediaRead	timeouts.	For	the	ExoPlayer	it	can	be	done
like	this:

val	dataSourceFactory:	DataSource.Factory	=	
				DefaultHttpDataSourceFactory(
								getExoUserAgentRawAndAppendOwn(configuration.userAgent),
								configuration.timeouts.mediaConnect	*	1000,
								configuration.timeouts.mediaRead	*	1000,	true)

GDPR	Consent



The	base64-encoded	cookie	value	of	IAB	GDPR	consent	info	that	will	expand	the
[GDPRCONSENT]	macro	should	now	be	defined	with	the	gdprConsent	property	of	the
SxConfiguration	class.

Playback	State

The	sdk	became	more	strict	regarding	the	PlaybackState.PLAYING	state.	You	only	should
set	this,	when	the	position	of	the	video	is	advancing.	See	the	following	code	for	an
example:

fun	buildPlaybackState():	PlaybackState	=	when	(exoPlayer.playbackState)	{
				Player.STATE_BUFFERING	->	PlaybackState.BUFFERING
				Player.STATE_READY	->	if	(exoPlayer.isPlaying)	PlaybackState.PLAYING	else	
PlaybackState.PAUSED
				Player.STATE_ENDED	->	PlaybackState.ENDED
				else	->	PlaybackState.IDLE
}


